COMMON POOL OF GENERIC ELECTIVES (GE) COURSES OFFERED BY THE DEPARTMENTS

GENERIC ELECTIVES (GE-3):

Credit distribution, Eligibility and Pre-requisites of the Course

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course
		Lecture	Tutorial	Practical/ Practice		
Virtual Instrumentation (INGE3A)	04	02	0	02	Course admission eligibility	Basic knowledge Electronics

Learning Objectives

The Learning Objectives of this course are as follows:

- To study the basic structure of virtual instrumentation
- To learn the basic programming concepts in LabVIEW
- To understand the basics of data acquisition for designing a Virtual Instrument

Learning outcomes

The Learning Outcomes of this course are as follows:

- Understand the importance and applications of Virtual Instrumentation
- Learn the basic programming concepts in LabVIEW
- Recognize the components of Virtual instrumentation and use them for PC Based measurement

SYLLABUS OF GE-3

UNIT – I (8 hours) Graphical System Design: Graphical system design model, Design flow with GSD, 131 Virtual Instrumentation, Virtual instrument, and traditional instrument, Hardware and software in virtual instrumentation, Virtual instrumentation for Test, control & design, Graphical system design using LABVIEW, Graphical programming & textual programming.

UNIT – II

LabVIEW Basics: Introduction, advantages of LABVIEW software environment, palettes, front panel controls & indicators, Block diagram, Data flow program. Repetition and Loops: For loops, while loops, structure tunnels, terminals inside or outside loops, shift registers, feed-back nodes, control timing, case structure.

UNIT – III

Arrays and Clusters: Arrays, Introduction, arrays in LABVIEW, creating one – dimensional array controls, indicators, and constants, creating two-dimensional arrays, creating multidimensional arrays, initializing array, deleting, inserting, and replacing elements, rows, columns, and pages within arrays, arrays functions. Clusters: Cluster controls and indicator, order of cluster elements, Cluster operations.

Plotting Data: Types of waveforms, waveform graphs, waveform charts, XY graphs, Intensity graphs & charts, Digital waveform graphs, 3D graphs, customizing graphs & charts, configuring a graph or chart, Displaying special planners on the XY graph.

UNIT – IV

File Input/ Output: File formats, file write &read, generating filenames automatically, String handling, string functions, LABVIEW string formats, parsing of strings. Instrument Control: Introduction, GPIB communication, Hardware specification, software architecture, Instrument I/O assistant, VISA, Instrument drivers, serial port communications, using other interfaces.

Practical component:

- 1. Build a VI to compute the expressions $Y = (A^*B^*C) + (D^*E)$ and Y = mx + c.
- 2. Split an input string into two outputs with reference to a separating character. Find the length of the input string and reverse the string.
- 3. Build a VI to perform various Boolean Operations (AND, OR, NAND, NOR, XOR).
- 4. Write a program in LabVIEW to find whether the given number is odd or even.
- 5. Create a VI to find the sum of first n natural numbers using a While Loop with a feedback node.
- 6. Create a VI to compute full adder logic using half adder logic as subVI.
- 7. Write a program in LabVIEW to find the square of the numbers from 1 to 100 using (a) a For Loop and (b) a While Loop.
- 8. Create a VI to compare the element of two clusters if the value of the corresponding elements are the same switch on LED in the output cluster.
- 9. Create a VI to compare clusters and Switch ON an LED in the output cluster if the nth element of cluster 1 is greater than the nth element of cluster 2.
- 10. Create a 2D numeric array (5×5) containing random numbers and find its transpose.
- 11. Create a VI to read a two-dimensional array and find the sum of the elements 132

(7 hours)

(8 hours)

(7 hours)

(60 hours)

in the row-wise and column-wise separately and display the sums of the rows and columns.

- 12. Create a 1D array and find its reverse.
- 13. Build a VI to plot a circle in the XY graph using a For Loop.
- 14. Build a VI that generates a 1D array of random numbers and sort the ascending descending array and also find the max. and min. value array element.
- 15. Build a cluster control that consists of a seven-segment LED display, a switch, a string control, and numeric control. Split the cluster elements using the Unbundle function and alter the values of some of the cluster controls. Bundle them again and display in a cluster indicator.
- 16. Using For loop determine the number of odd numbers between a range of numbers entered by the user.
- 17. Build a VI to plot different colors in an intensity graph using an array.
- 18. Create a VI to check whether the cluster elements are in range or not. Specify the upper and lower limits. Display the coerced output and a cluster of LEDs to indicate whether a particular cluster element is in the range or not.
- 19. Write a program to solve x2+bx+c=0.
- 20. Build a VI to generate two waveforms of different amplitude and frequencies add the signal to find the resultant and plot it on a separate waveform graph.
- 21. Create a VI to read a two-dimensional array and find the sum of the elements in the row-wise and column-wise separately and display the sums of the rows and columns.

Essential/recommended readings

- 1. Jovitha Jerome, Virtual Instrumentation Using Labview, PHI Learning Pvt. Ltd. (2010)
- 2. John Essick, Hands-on Introduction to LabVIEW for Scientists and Engineers, 3rd Edition, 2015.
- 3. Gupta, Virtual Instrumentation Using Labview 2E, McGraw Hill. (2010)

Suggestive readings

1. Jeffrey Travis, LabVIEW for everyone, Prentice-Hall PTR,2007.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.

GENERIC ELECTIVES (GE-3): Industrial and environmental techniques (INGE3B)

Credit distribution	, Eligibility and	Pre-requisites	of the Course
----------------------------	-------------------	-----------------------	---------------

Course title &	Credits	Credit distribution of the			Eligibility	Pre-requisite
Code		course			criteria	of the course
		Lecture	Tutorial	Practical/		12

				Practice		
Industrial and environmental techniques (INGE3B)	04	02	0	02	Course admission eligibility	Basic knowledge of chemistry or analytical chemistry

Learning Objectives

The Learning Objectives of this course are as follows:

- Demonstration of a clear and exhaustive understanding of the basic concepts of Industrial analysis of different industrial products.
- Impart theoretical and practical knowledge of Analysis of food and food products
- Learn analysis of various pharmaceutical drugs as per the standard pharmacopeia

To expose to different types of Environmental pollutants and their analysis:

Learning outcomes

The Learning Outcomes of this course are as follows:

- Identify the key environmental factors shaping an industry
- Demonstrate ability to use tools and methodologies for performing analysis for various types of industries
- Develop a detailed professional report of Industry Analysis conducted.

SYLLABUS OF GE-3

UNIT – I

Industrial analysis

Paints: Definition, constituents and their functions, flash point of paints, separation of pigments, binder and thinner. Analysis of vehicle and thinner.

Pigments: General outline of identification and analysis of pigments -organic and inorganic pigments, their qualitative chemical test, analysis of white and tinted pigments.

Pesticides: Definition and classification of pesticides, analysis of the following in outline – DDT, Malathion, Diagionon.

Alloys: Composition and estimation of main constituents in in the following – Stainless steel, Brass, Solder and Gun metal

Rubber and Polymers: Mechanical, Thermal, Electrical and Optical properties, Analysis and Characterization.

UNIT – II

Analysis of food and food products

Composition and analysis of the following: Milk- Specific gravity, total solid, fat, proteins, lactose, contaminants in milk (QAS, artificial color and antibiotic), Wheat flour- Moisture, ash, oil, fat, protein, fiber, acidity, starch and maltose. Beverages- 134

(8 hours)

(8 hours)

Alcohol contents. Tea- Moisture, ash, tannin and caffeine. cyclamate. Honey-Moisture, HMF, Free acid, pH and carbohydrate.

UNIT – III

Pharmaceutical analysis

Drug, classification of drugs, introduction to Indian pharmacopoeia. Analysis of following drugs as per IP and BP (monograms) - Amoxycillin, Analgin, Proponolol, Pilocarbine nitrate, Rifampicin, Paracetamol, Nimuselide, Ranitidine.

UNIT – IV

Environmental analysis

Analysis of water- color, Odor, pH, taste, conductivity, dissolved solid, hardness, DO, COD, BOD, chlorides, sulphates, nitrites and phosphates.

Analysis of air- Sampling, particulate matter, gaseous pollutants-SOX, NOX, COX and organic pollutant

Practical component:

- 1. Determination of physical parameters of wastewater: pH, color, conductivity and Oxidation reduction potential.
- 2. Determination of dissolved oxygen in given water sample.
- 3. Estimation of phosphorous in fertilizer
- 4. Determination of calcium in cement sample (Titrimetry)
- 5. Estimation of calcium and Magnesium in dolomite ore.
- 6. Analysis of water for COD.
- 7. Colorimetric estimation of trace of nitrogen in the given water sample using Nessler's reagent.
- 8. Analysis of tea and coffee.
- 9. Determination of refractive index of given edible oil/solvents and determine its percentage purity.
- 10. Determination of Ascorbic acid.
- 11. Colorimetric estimation of Rifampicin (IP 1996)
- 12. Assay of Aspirin.
- 13. Estimation of specific gravity and total solids present in milk samples.
- 14. Estimation of lactose content of milk.
- 15. Determination of glucose in honey.
- 16. Quality assessment of Rubber/polypropylene/polyethylene samples

Essential/recommended readings

- 1. Analytical chemistry: an introduction: D. A. Skoog, D. M. West and F. J. Holler, Saunders the College publishers, 6th edition.
- 2. Vogel's Textbook of Qualitative Chemical Analysis, ELBS, 6th edition 2009.
- 3. Indian Pharmacopeia (2018)
- 4. A.B. Mathur and I.S. Bhardwaj, Testing and Evaluation of Plastics, Allied Publishers Pvt Limited, 2003
- 5. Rao, E. S. (2013). Food Quality Evaluation (I ed.). New Delhi: Variety Book Publishers.
- 6. DeMan. (2007). Principles of Food Chemistry. Springer, 3rdedition.

(60 hours)

(7 hours)

(7 hours)

Suggestive readings

- 1. Rao, E. S. (2013). Food Quality Evaluation (I ed.). New Delhi: Variety Book Publishers.
- 2. DeMan. (2007). Principles of Food Chemistry. Springer, 3rd edition.
- 1.
- Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.